
NASA Contractor Report

ICASE Report No. 93-99

191587 o 5 o13

IC S
RUNTIME SUPPORT AND COMPILATION METHODS

FOR USER-SPECIFIED DATA DISTRIBUTIONS

Ravi Ponnusamy

Joel Saltz

Alok Choudhury

Yuan-Shin Hwang

Geoffrey Fox

NASA Contract No. NAS 1-19480

December 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

0"

,,0 aO

N @ 0
I ,-" Ir_

,4" U 0
O, _ N

I- v)

Z
0 0

C_

Z 0 t3 .,_

ix: I--- _ t#_
WI'-<

00
t_ _.-0 IAj
_-i i..- i.-d 4.j

l _-ll...jr_

"_ _ ! .'--

'4)

Runtime Support and Compilation Methods for User-Specified

Data Distributions*

Ravi Ponnusamy t_ Joel Saltz t Alok Choudhary _ Yuan-Shin Hwang t

Geoffrey Fox _

t UMIACS and Computer Science Dept. $Northeast Parallel Architectures Center

University o_ Maryland Syracuse University

College Park, MD _07_2 Syracuse, NY 13_44

Abstract

This paper describes two new ideas by which an ttPF compiler can deal with irregular computations effectively.

The first mechanism invokes a user specified mapping procedure via a set of compiler directives. The directives

allow use of program arrays to describe graph connectivity, spatial location of array elements and computational

load. The second mechanism'is a simple conservative method that in many cases enables a compiler to recognize

that it is possible to reuse previously computed information from inspectors (e.g. communication schedules, loop

iteration partitions, information that associates off-processor data copies with on-processor buffer locations}.

We present performance results for these mechanisms from a Fortran 90D compiler intplementalion.

*This work was sponsored in part by ARPA (NAG-l-1485), NSF (ASC 9213821) and ONR (SC292-1-22913). Also supported
by NASA Contract No. NAS1-19480 while author Saltz was in residence at ICASE, NASA Langley Research Center, Hampton,

Virginia. Author Choudhary was also supported by NSF Young Investigator award (CCR-9357840). The content of the inforanation
does not necessarily reflect the position or tile policy of the Govemunent and no official endorsement should be ilfferred.

1 Introduction

1.1 Background

We address a class of irregular problems that consists of a sequence of clearly demarcated concurrent com-

putational phases where patterns of data access and computational cost cannot be anticipated until runtime.

In this class of problems, once runtime information is available, data access patterns are known before each

computational phase. We call these problem irregular concurrent problems [10]. Examples of irregular concur-

rent problems include adaptive and self-adaptive explicit, multigrid unstructured computational fluid dynamic

solvers [31, 38, 16], molecular dynamics codes (CHARMM, AMBER,, GROMOS, etc.) [6], diagonal or polynomial

preconditioned iterative linear solvers [39], and time dependent flame modeling codes [34].

In this paper, we focus on the runtime support, the language extensions and the compiler support required

to provide efficient data and work load distribution. We present methods and a prototype implementation that

make it possible for compilers to efficiently handle irregular problems coded using a set of language extensions

closely related to Fortran D [15], Vienna Fortran [43] and High-Performance Fortran (HPF).

The optimizations that must be carried out to solve irregular concurrent problems efficiently on a distributed

memory machine include:

1. data partitioning

2. partitioning computational work

3. software caching methods to reduce communication volume

4. communication vectorization to reduce communication startup costs

Since data access patterns are not known in advance, decisions about data structure and workload par-

titioning have to be deferred until runtime. Once data and work have been partitioned between processors,

prior knowledge of loop data access patterns makes it possible to predict which data needs to be communicated

between processors. This ability to predict communication requirements makes it possible to carry out com-

munication optimizations. In many cases, communication volume can be reduced by pre-fetching only a single

copy of each referenced off-processor datum. The number of messages can also be reduced by using data access

pattern knowledge to allow pre-fetching quantities of off-processor data. These two optimizations are called

software caching and communication vectorization.

Whenever there is a possibility that a loop's data access patterns might have changed between consecutive

loop invocations, it is necessary to repeat the preprocessing needed to minimize communication volume and

startup costs. When data access patterns change, it may also be necessary to repartition computational work.

Fortunately, in many irregular concurrent problems, data access patterns change relatively infrequently. In

this paper, we present simple conservative techniques that in many cases make it possible for a compiler to

verify that data access patterns remain unchanged between loop invocations, making it possible to amortize the

associated costs of software caching and message vectorization.

Figure 1 illustrates a simple sequential Fortran irregular loop (loop L2) which is similar in form to loops found

in unstructured computational fluid dynamics (CFD) codes and molecular dynamics codes In Figure 1, arrays x

C OuterloopL1

doi = 1,n_step

C InnerLoopL2

doi=l, nedge

y(edgel(i))= y(edgel(i))+ f(x(edgel(i)), x(edge2(i)))

y(edge2(i)) = y(edge2(i)) + g(x(edgel(i)), x(edge2(i)))

end do

end do

Figure 1: An Example code with an Irregular Loop

and y are accessed by indirection arrays edgel and edge2. Note that the data access pattern associated with

the inner loop, loop L2 is determined by integer arrays edgel and edge2. Because arrays edgel and edge2 are

not modified within loop L2, L2's data access pattern can be anticipated prior to executing L2. Consequently,

edgel and edge2 are used to carry out preprocessing needed to minimize communication volume and startups.

Whenever it can be determined that edgel, edge2, and nedge have not been modified between consecutive

iterations of outer loop L1, repeated preprocessing can be avoided.

1.2 Irregular Data Distribution

On distributed memory machines, large data arrays need to be partitioned between local processor memories.

These partitioned data arrays are called distributed arrays. Long term storage of distributed array data is

assigned to specific processor and memory locations in the machine. Many applications can be efficiently

implemented by using simple schemes for mapping distributed arrays. One example of such a scheme would be

the division of an array into equal sized contiguous subarrays and assignment of each subarray to a different

processor. Another example would be to assign consecutively indexed array elements to processors in a round-

robin fashion. These two data distribution schemes are often called BLOCK and CYCLIC data distributions [14],

respectively.

Researchers have developed a variety of heuristic methods to obtain data mappings that are designed to

optimize irregular problem communication requirements [37, 41, 29, 27, 3, 20]. The distribution produced by

these methods typically results in a table that lists a processor assignment for each array element. This kind of

distribution is often called an irregular distribution.

Partitioners typically make use of one or more of the following types of information:

1. a description of graph connectivity

2. spatiallocationofarrayelements

3. information that associates array elements with computational load

Languages such as High Performance Fortran, Fortran D and Vienna Fortran allow users to advise the

compiler on how array elements should be assigned to processor memories. In ttPF a pattern of data mapping

can be specified using the DISTRIBUTE directive. Two major types of patterns can be specified this way: BLOCK

and CYCLIC distributions. For example,

REAL, DIMENSION(500,500) :: X, Y

!HPF $ DISTRIBUTE (*, BLOCK) :: X

!HPF $ DISTRIBUTE (BLOCK, BLOCK) :: Y

breaks the arrays X and Y into groups of columns and rectangular blocks, respectively.

In this paper, we describe an approach where the user does not ezplicitly specify a data distribution. Instead

the user specifies:

1. the type of information to be used in data partitioning, and

2. the irregular data partitioning heuristic to be used

We have designed and implemented language extensions to allow users to specify the information needed to

produce an irregular distribution. Based on user directives, the compiler produces code that, at runtime, passes

the user specified partitioning information to a (user specified) partitioner.

To our knowledge, the implementation described in this paper was the first distributed memory compiler

to provide this kind of support. User specified partitioning has recently been implemented in the D System

Fortran 77D compiler [19]; the CHAOS runtime support described in this paper has been employed in this

implementation. In the Vienna Fortran [43] language definition a user can specify a customized distribution

function. The runtime support and compiler transformation strategies described here can also be applied to

Vienna Fortran.

We have implemented our ideas using the Syracuse Fortran 90D/HPF compiler [5]. We have made the

following assumptions:

1. irregular accesses are carried out in the context of a single or multiple statement parallel loop where

dependence between iterations may occur due to reduction operations only (e.g. addition, max, rain,

etc.), and

2. irregular array accesses occur as a result of a single level of indirection with a distributed array that is

indexed directly by the loop variable

1.3 Organization

This paper is organized as follows. The context of the work is outlined in Section 2. Section 3 describes

the runtime technique that saves and reuses results from previously performed loop pre-processing. Section 4

describesthedatastructure,thecompilertransformations,andthelanguageextensionsusedtocontrolcompiler-
linkedruntimepartitioning.Section5 presentstheruntimesupportdevelopedfor couplingdatapartitioners,
for partitioningworkloadandformanagingirregulardatadistributions.Section6presentsdatato characterize
theperformanceofourmethods.Section7providesasummaryofrelatedwork,andSection8concludes.

2 Overview

2.1 Problem Partitioning and Application Codes

It is useful to describe application codes to introduce the motivation behind preprocessing. We first describe two

application codes (an unstructured Euler solver and a molecular dynamics code) that consist of a sequence of

loops with indirectly accessed arrays; these are loops analogous to those depicted in Figure 1. We then describe

a combustion code with a regular data access pattern but with highly non-uniform computational costs. In that

code, computational costs vary dynamically and cannot be estimated until runtime.

2.1.1 Codes with Indirectly Accessed Arrays

The first application code is an unstructured Euler solver used to study the flow of air over an airfoil [31, 38, 23].

Complex aerodynamic shapes require high resolution meshes and, consequently, large numbers of mesh points.

A mesh vertex is an abstraction represented by Fortran array data structures. Physical values (e.g. velocity,

pressure) are associated with each mesh vertex. These values are called flow variables and are stored in arrays.

Calculations are carried out using loops over the list of edges that define the connectivity of the vertices. For

instance, Figure 1 sweeps over hedges mesh edges. Loop iteration i carries out a computation involving the

edge that connects vertices edgel(i) and edge2(i).

To parallelize an unstructured Euler solver, one needs to partition mesh vertices (i.e. arrays that store flow

variables). Since meshes are typically associated with physical objects, a spatial location can often be associated

with each mesh point. The spatial location of the mesh points and the connectivity of the vertices is determined

by the mesh generation strategy [40, 30]. Figure 2 depicts a mesh generated by such a process. This is an

unstructured mesh representation of a three dimensional aircraft wing.

The way in which the vertices of such irregular computational mesh are numbered frequently does not have

a useful correspondence to the connectivity pattern (edges) of the mesh. We partition mesh points to minimize

communication. Recently promising heuristics have been developed that can use one or several of the following

types of information: 1) spatial locations of mesh vertices, 2) connectivity of the vertices, and 3) estimates

of the computational load associated with each mesh point. For instance, a user might choose a partitioner

that is based on coordinates [3] to partition data. A coordinate bisection partitioner decomposes data using

the spatial location of vertices in the mesh. If tim user chooses a graph based partitioner, such as the spectral

partitioner [37], the connectivity of the mesh could be used to decompose the data.

The next step in parallelizing this application involves assigning equal amount of work to processors. An

Euler solver consists of a sequence of loops that sweep over a mesh. Computational work associated with each

loop must be partitioned between processors to balance load. Our approach is to assign all work associated with

a given loop iteration to a single processor. Consider a loop that sweeps over mesh edges, closely resembling

Figure2: AnExampleUnstructuredMesh

Table 1: Application Area Specific Terminology

Program Representat!on., Unstructured Mesh Molecular Dynamics

Data Array Elements

Loop Iterations

Array Distribution

Loop Iteration
Partition

Physical State for
each Mesh Vertex

Mesh Edges

Partition of Mesh Vertices

Edge Partition

Force Components
for Each Atom

Partner list

Partition of Atoms

Partition of Non-bonded

Force Calculations

the loop depicted in Figure 1. We would partition mesh edges so that 1) we obtain a good load balance and 2)

computations mostly employ locally stored data.

Other unstructured problems have analogous indirectly accessed arrays. For instance, consider the non-

bonded force calculation in the molecular dynamics code CHARMM [6]. Figure 5 depicts the non-bonded force

calculation loop. Force components associated with each atom are stored as Fortran arrays. The outer loop L1

sweeps over all atoms; in this discussion, we assume that L1 is a parallel loop. Each iteration of L1 is carried

out on a single processor, so loop L2 need not be parallelized.

All atoms within a given cutoff radius interact with each other. The array Partners(i, *) list all the atoms

that interact with atom i. Inside the inner loop, the three force components (x,y,z) between atom i and atom j

are calculated (Vander Waal's and electrostatic forces). They are then added to the forces associated with the

atom i and subtracted from the forces associated with the atom j.

We attempt to partition force array elements to reduce interprocessor communication in the non-bonded

force calculation loop (Figure 5). Figure 3 depicts a possible distribution of force array elements to four

processors. This figure depicts a Myoglobin molecule in which shading is used to represent the assignment of

atoms to processors. Data sets associated with sequential versions of CHARMM associate each atom with an

arbitrary index number. We depict a distribution that assigns consecutively numbered sets of atoms to each

processor (i.e. a BLOCKdistribution). Since nearby atoms interact, we see that in this case, the choice of a BLOCK

distribution is likely to result in a large volume of communication. Consider instead a distribution based on the

spatial locations of atoms. Figure 4 depicts a distribution of atoms to processors carried out using a coordinate

bisection partitioner [3]. When we compare Figure 3 with Figure 4, we see that the later figure has a much

smaller amounts of surface area between the portions of the molecule associated with each processor.

Table 1 summarizes the application area specific terminology used to describe data array elements, loop

iterations, array distributions and loop iteration partition.

2.1.2 A Code with Time Varying Computational Costs

We now describe a type of application code that is qualitatively different from the unstructured Euler and

molecular dynamics codes previously discussed. This type of code is used to carry out detailed time dependent,

Figure3: BLOCKDistributionof Atoms

Figure4: DistributionofAtomsUsingaPartitioner

7

LI: do i = 1, NATOM

L2: do index = 1, INB(i)

j = Partners(i, index)

Calculate dF (x, y and z components).

Subtract dF from Fj.

Add dF to Fi

end do

end do

Figure 5: Non-bonded Force Calculation Loop from CHARMM

multi-dimensional flame simulations. The calculation cycles between two distinct phases. The first phase

(convection) calculates fluid convection over a Cartesian mesh. The second phase (reaction) solves the ordinary

differential equations used to represent chemical reactions and energy release. During the reaction phase, a set

of local computations are carried out at each mesh point. The computational costs associated with the reaction

phase varies from mesh point to mesh point since at each mesh point an adaptive method is used to solve the

system of ordinary differential equations. Arrays in this application are not indirectly accessed as in the previous

two example applications.

In Figure 6 we present a simplified one dimensional version of this code. The convection phase (loop nest L2)

consists of a sweep over a structured mesh involving array elements located at nearest neighbor mesh points.

The reaction phase (loop nest L3) involves only local calculations. The computational cost associated with the

function Adaptive_Solver depends on the value of x(i). It is clear that the cost of Adaptive_Solver can vary from

mesh point to mesh point. The cost of Adaptive_Solver at a given mesh point that slowly changes between

iterations of the outer loop L1.

There are a number of strategies that can be used in partitioning data and work associated with this flame

code. If the convection calculations comprise the bulk of the computation time, it would be reasonable to

partition the mesh (arrays x_y and z in Figure 6) into equal sized blocks.

However, the reaction calculations (loop nest L3 in Figure 6) usually comprise at least half of the total

computational cost. A majority of the work associated with the reaction phase of the calculation is carried

out on a small fraction of the mesh points. Our current approach involves maintaining a block mapping of

the mesh (arrays x,y and z) during the convection phase. (In actual codes, we typically deal with two or

three dimensional meshes represented as two o_ three dimensional arrays). In order to ensure a good load

balance during the reaction phase, we redistribute only expensive reaction calculations. In Figure 6, we must

transmit array element x(i) in order to redistribute the reaction calculation for mesh point i. Once the reaction

calculation is carried out, the solution z(i) is returned to the processor to which it is assigned. At a given mesh

point, the cost associated with a reaction calculation generally vary gradually as a problem progresses. This

L1: dotime=1,timesteps

C ConvectionPhase:

L2: doi = 1, NPOINTS

x(i) = x(i) + F(y(i),y(i-l), y(i), y(i+l), z(i))

end do

y(l :NPOINTS) = x(I:NPOINTS)

C Reaction Phase:

L3: do i = 1, NPOINTS

z(i) = Adaptive_Solver(x(i)

end do

end do

Figure 6: Overview - Combustion Code

property provides a way to estimate reaction calculation costs in the subsequent computation step.

2.2 Solving Irregular Problems

In this section, we describe how we solve irregular problems efficiently on distributed memory machines. On

distributed memory machines the data and the computational work must be divided between individual proces-

sors. The criteria for partitioning are minimizing the volume of interprocessor data communication and good

load-balancing.

Once distributed arrays have been partitioned, each processor ends up with a set of globally indexed dis-

tributed array elements. Each element in a size N distributed array, A, is assigned to a particular home

processor. In order for another processor to be able to access a given element, A(i), of the distributed array the

home processor and local address of A(i) must be determined. A translation table is built that for each array

element, lists the home processor and the local address.

Memory considerations make it clear that it is not always feasible to place a copy of the translation table

on each processor, so the translation table must be distributed between processors. This is accomplished by

distributing the the translation table by blocks i.e. putting the first N/P elements on the first processor, the

second N/P elements on the second processor, etc., where P is the number of processors. When an element

A(m) of distributed array A is accessed, the home processor and local offset are found in the portion of the

distributed translation table stored in processor ((m - 1)/N) * P + 1. We refer to a translation table lookup

aimed at discovering the home processor and the offset associated with a global distributed array index as a

dereference requesl.

Considerthe irregular loop L2 in Figure 1 that sweeps over the edges of a mesh. In this case, distributing

data arrays x and y corresponds to partitioning the mesh vertices; partitioning loop iterations corresponds to

partitioning edges of the mesh. Hence, each processor gets a subset of loop iterations (edges) to work on. An

edge i that has both end points (edgel(i) and edge2(i)) inside the same partition (processor) requires no outside

information. On the other hand, edges which cross partition boundaries require data from other processors.

Before executing the computation for such an edge, processors must retrieve the required data from other

processors.

There is typically a non-trivial communication latency, or message startup cost, in distributed memory

machines. We vectorize communication to reduce the effect of communication latency and carry out software

caching to reduce communication volume. To carry out either optimization, it is extremely helpful to have

a-priori knowledge of data access patterns. In irregular problems, it is generally not possible to predict data

access patterns at compile time. For example, the values of indirection arrays edgel and edge2 of loop L2 in

Figure 1 are known only at runtime because they depend on the input mesh. During program execution, we

pre-process the data references of distributed arrays. On each processor, we pre-compute which data need to

be exchanged. The result of this pre-processing is a communication schedule [32].

Each processor uses communication schedules to exchange required data before and after executing a loop.

The same schedules can be used repeatedly, as long as the data reference patterns remain unchanged. In

Figure 1, loop L2 is carried out many times inside loop L1. As long as the indirection arrays edgel and edge2

are not modified within L1, it is possible to reuse communication schedules for L2. We discuss schedule reuse

in detail in the Section 3.

2.3 Communication Vectorization and Software Caching

We describe the process of generating and using schedules to carry out communication vectorization and

software caching with the help of the example shown in Figure 1. The arrays x, y, edgel and edge2 are

partitioned between the processors of the distributed memory machine. We assume that arrays x and y are

distributed in the same fashion. Array distributions are stored in a distributed translation table. These local

indirection arrays are passed to the procedure localize as shown in statement S1 in Figure 7.

Figure 7 contains the pre-processing code for the simple irregular loop L2 shown in Figure 1. In this loop,

values of array y are updated using the values stored in array x. Hence, a processor may need an off-processor

array element of x to update an element of y and it may update an off-processor array element of y. Our

goal is to compute 1) a gather schedule - a communication schedule that can be used for fetching off-processor

elements of x, and 2) a scatter schedule - a communication schedule that can be used to send updated off-

processor elements of y. However, the arrays x and y are referenced in an identical fashion in each iteration

of the loop L2, so a single schedule that represents data references of either x or y can be used for fetching

off-processor elements of x and sending off-processor elements of y.

A sketch of how the procedure localize works is shown in Figure 8. We store the globally indexed reference

pattern used to access arrays x and y in the array part_edge. The procedure localize dereferences and translates

part_edge so that valid references are generated when the loop is executed. The buffer for each data array

immediately follows the on-processor data for that array. For example, the buffer for data array y begins at

10

C Create the required schedules (Inspector)

S 1 Collect indirection array traces and call Chaos procedure localize to compute schedule

C The actual computation (Executor)

$2 call zero_out_buffer(x(begin_buffer), off_proc)

$3 call gather(x(begin_buffer), x, schedule)

$4 do i=l, n_local_edge

$5 y(Iocal_edgel(i)) = y(local_edgel(i)) + f(x(local_edgel(i)), x(locaLedge2(i)))

$6 y(local_edge2(i)) = y(local_edge2(i)) + g(x(local_edgel(i)), x(local_edge2(i)))

$7 end do

$8 call scatter_add(y(begin_buffer), y, schedule)

Figure 7: Node Code for Simple Irregular Loop

Partitioned global

refer_._encelist

localized global

reference list

localize

off-processor

references

-L
-/

local buffer

references

buffer------_

data array
--T

local

data

j_off-processor data

Figure 8: Index Translation by Localize Mechanism

ll

Phase A

Generate GeoCoL Graph

Partition GeoCoL Graph

Phase B

Generate Iteration Graph

Partition Iteration Graph

Phase C

Remap Arrays and Loop Iterations

PhaseD.

Pre-processLoops

PhaseE
Exec_tte Loops

Partition
Data

PartitionLo_
Iterations

Remap

Figure 9: Solving Irregular Problems

y(begin_buffer). Hence, when locqlize translates part_edge to local_edge, the off-processor references are

modified to point to buffer addresses. The procedure localize uses a hash table to remove any duplicate references

to off-processor elements so that only a single copy of each off-processor datum is transmitted. When the off

processor data is collected into the buffer using the schedule returned by localize, the data is stored in a way

such that execution of the loop using the local_edge accesses the correct data.

The executor code starting at $2 in Figure 7 carries out the actual loop computation. In this computation the

values stored in the array y are updated using the values stored in x. During the computation, accumulations

to off-processor locations of array y are carried out in the buffer associated with array y. This makes it

necessary to initialize the buffer corresponding to off-processor references of y. To perform this action we

call the function zero.ouLbuffer shown in statement $2. After the loop computation, the data in the buffer

location of array y is communicated to the home processors of these data elements (scatter_add). There are two

potential communication points in the executor code, i.e. the gather and the scatter_add calls. The gather on

each processor fetches all the necessary x references that reside off-processor. The scatter_add calls accumulates

the off-processor y values. A detailed description of the functionality of these procedures is given in Das et

al [12].

2.4 Overview of CHAOS

We have developed efficient runtime support to deal with problems that consist of a sequence of clearly de-

marcated concurrent computational phases. The project is called CHAOS; the runtime support is called the

CHAOS library. The CHAOS library is a superset of the PARTI library [32, 42, 36].

Solving concurrent irregular problems on distributed memory machines using our runtime support involves

five major steps (Figure 9). The first three steps in the figure concern mapping data and computations onto

processors. We provide a brief description of these steps here, and will discuss them in detail in later sections.

Initially, the distributed arrays are decomposed into a known regular manner.

1. The first step is to decompose the distributed array irregularly with the user provided information. When

the user chooses connectivity as one of the information to be used for data partitioning, certain pre-

12

processing (see Section 5) is required before information can be passed to a partitioner. In Phase A of

Figure 9, CHAOS procedures can be called to do the necessary pre-processing. For example, the user may

employ a partitioner that uses the connectivity of the mesh shown in Figure 2 or may use a partitioner

that uses the spatial information of the mesh vertices. The partitioner calculates how data arrays should

be distributed.

2. In Phase B, the newly calculated array distributions are used to decide how loop iterations are to be parti-

tioned among processors. This calculation takes into account the processor assignment of the distributed

array elements accessed in each iteration. A loop iteration is assigned to the processor that has the max-

imum number of local distributed arrays elements accessed in that iteration. Once data is distributed,

based on the access patterns of each iteration and data distribution, the runtime routines for this step

determine on which processor each iteration will be executed.

3. Once new data and loop iteration distributions are determined, Phase C carries out the actual remapping

of arrays from the old distribution to the new distribution.

4. In Phase D, the preprocessing needed for software caching, communication vectorization and index trans-

lation is carried out. In this phase, a communication schedule is generated that can be used to exchange

data among processor.

5. Finally, in Phase E, information from the earlier phases is used to carry out the computation and com-

munication.

CHAOS and PARTI procedures have been used in a variety of applications, including sparse matrix linear

solvers, adaptive computational fluid dynamics codes, molecular dynamics codes and a prototype compiler [36]

aimed at distributed memory multiprocessors.

2.5 Overview of Existing Language Support

While our data decomposition directives are presented in the context of Fortran D, the same optimizations and

analogous language extensions could be used for a wide range of languages and compilers such as Vienna Fortran,

pC++, and HPF. Vienna Fortran, Fortran D and HPF provide a rich set of data decomposition specifications.

A definition of such language extensions may be found in Fox et al [15], Loveman et al [14], and Chapman et

al [8], [9]. Fortran D and ttPF require that users explicitly define how data is to be distributed. Vienna Fortran

allows users to write procedures to generate user defined distributions. The techniques described in this paper

are being adapted to implement user defined distributions in the Vienna Fortran compiler, details of our Vienna

Fortran based work will be reported elsewhere.

Fortran D and Vienna Fortran can be used to explicitly specify an irregular partition of distributed array

elements. In Figure 10, we present an example of such a Fortran D declaration. In Fortran D, one declares

a template called a distribution that is used to characterize the significant attributes of a distributed array.

The distribution fixes the size, dimension and way in which the array is to be partitioned between processors.

A distribution is produced using two declarations. The first declaration is DECOMPOSITION. Decompo-

sition fixes the name, dimensionality and size of the distributed array template. The second declaration is

13

SI REAL*8 x(N),y(N)

$9 INTEGER map(N)

s3 DECOMPOSITION reg(N),irreg(N)

$4 DISTRIBUTE reg(block)

$5 ALIGN map with reg

$6 ... set values of map array using some mapping method ..

$7 DISTRIBUTE irreg(map)

$8 ALIGN x,y with irreg

Figure 10: Fortran D Irregular Distribution

DISTRIBUTE. Distribute is an executable statement and specifies how a template is to be mapped onto the

processors.

Fortran D provides the user with a choice of several regular distributions. In addition, a user can explicitly

specify how a distribution is to be mapped onto the processors. A specific array is associated with a distribution

using the Fortran D statement ALIGN. In statement $3, of Figure 10, two 1D decompositions, each of size !I,

are defined. In statement $4, decomposition reg is partitioned into equal sized blocks, with one block assigned

to each processor. In statement $5, array map is aligned with distribution reg. Array map will be used to specify

(in statement $7) how distribution ir:reg is to be partitioned between processors. An irregular distribution is

specified using an integer array; when map(i) is set equal to p, element i of the distribution irreg is assigned

to processor p.

The difficulty with the declarations depicted in Figure l0 is that it is not obvious how lo partition the

irregularly distributed array. The map array that gives the distribution pattern of ±rreg has to be generated

separately by running a partitioner (the user may supply the partitioner or use one from a library). The

Fortran-D constructs are not rich enough for the user to couple the generation of the map array to the program

compilation process. While there are a wealth of partitioning heuristics available, coding such partitioners

from scratch can represent a significant effort. There is also no standard interface between the partitioners

and the application codes. In Section 4, we discuss language extensions and compiler support to interface data

partitioners.

Figure 11 shows an irregular Fortran 90D ForMl loop that is equivalent to the sequential loop L2 in Figure 1.

The loop L1 represents a sweep over the edges of an unstructured mesh. Since the mesh is unstructured, an

indirection array has to be used to access the vertices during a loop over the edges. In loop L1, a sweep is carried

out over the edges of the mesh and the reference pattern is specified by integer arrays edgel and edge2. Loop

L1 carries out reduction operations. That is, the only type of dependency between different iterations of the

loop is the one in which they may produce a value to be accumulated (using an associative and commutative

operation) in the same array element. Figure 2 shows an example of an unstructured mesh over which such

14

C Sweep over edges: Loop L1

FORALL i = 1, nedge

SI REDUCE (ADD, y(edgel(i)), f(x(edgel(i)), x(edge2(i))))

S2 REDUCE (ADD, y(edge2(i)), g(x(edgel(i)), x(edge2(i))))

END FORALL

Figure 11: Example Irregular Loop in Fortran D

computations will be carried out. For example, the loop L1 represents a sweep over the edges of a mesh in

which each mesh vertex is updated using the corresponding values of its neighbors (directly connected through

edges). Clearly, each vertex of the mesh is updated as many times as the number of neighboring vertices.

The implementation of the Forall construct in High-Performance Fortran follows copy-in-copy-out semantics

- loop carried dependencies are not defined. In our implementation, we define loop carried dependencies that

arises due to reduction operations. We specify reduction operations in a ForMl construct using the Fortran D

"REDUCE" construct. Reduction inside a Forall construct is important for representing computations such

as those found in sparse and unstructured problems. This representation also preserves explicit parallelism

available in the underlying computations.

3 Communication Schedule Reuse

The cost of carrying out an inspector (phases B, C and D in Figure 9) can be amortized when the information

produced by the inspector is computed once and then used repeatedly. The compile time analysis needed to

reuse inspector communication schedules is touched upon in [18, 13].

We propose a conservative method that in many cases allows us to reuse the results from inspectors. The

results from an inspector for loop L can be reused as long as:

• the distributions of data arrays referenced in loop L have remained unchanged since the last time the

inspector was invoked

• there is no possibility that the indirection arrays associated with loop L have been modified since the last

inspector invocation, and

• the loop bounds of L have not changed

The compiler generates code that, at runtime, maintains a record of when the statements or array intrinsics of a

Fortran 90D loop may have written to a distributed array that is used to indirectly reference another distributed

array. In this scheme, each inspector checks this runtime record to see whether any indirection arrays may have

been modified since the last time the inspector was invoked.

In this presentation, we assume that we are carrying out an inspector for a Forall loop. We also assume that

all indirect array references to any distributed array y are of the form y(ia(i)) where ia is a distributed array

and i is a loop index associated with the ForMl loop.

15

A dataaccessdescriptor(DAD)fora distributed array contains (among other things) the current distribution

type of the array (e.g. block, cyclic) and the size of the array. In order to generate correct distributed memory

code, whenever the comp'iler generates code that references a distributed array, the compiler must have access

to the array's DAD. In our scheme, we maintain a global data structure that keeps track of modifications of any

array with a given DAD.

We maintain a global variable n_mod that represents the cumulative number of Fortran 90D loops, array

intrinsics or statements that have modified any distributed array. Note that we are not counting the number

of assignments to the distributed array, instead we are counting the number of times the program will execute

any block of code that writes to a distributed array 1. n__mod may be viewed as a global time stamp. Each

time we modify an array A with a given data access descriptor DAD(A), we update a global data structure

lastanod to associate DAD(A).with the current value of the global variable n_.mod (i.e. the current global

time stamp). Thus when a loop, array intrinsic or statement modifies A we set last_rood(DAD(A)) = n_mod.

If the array A is remapped, it means that DAD(A) changes. In this case, we increment n_mod and then set

last_rood(DAD(A)) = n._mod.

The first time an inspector for a Forall loop L is carried out, it must perform all the preprocessing. Assume

that L has m data arrays x_, 1 < i < m, and n indirection arrays, indJL, 1 <_j < n. Each time an inspector for

L is carried out, we store the following information:

1. DAD(:r_) for each unique data array x_ , for 1 < i < m

2. DAD(indJL) for each unique indirection array indJL, for 1 _<j _< n

3. last_mod(DAD(ind,)), for 1 _<j _< n, and

4. the loop bounds of L

We designate the values of DAD(x_), DAD(indJL) and last_mod(DAD(indJL)) stored by L's inspector as

L.DAD(xIL), L.DAD(inadL) and L.last_mod(DAD(indJL)).

For a given data array x_ and an indirection array indJL in a Forall loop L, we maintain two sets of data

access descriptors. For instance, we maintain,

1. DAD(z_), the current global data access descriptor associated with x_, and

2. L.DAD(x_), a record of the data access descriptor that was associated with z_ when L carried out its

previous inspector

For each indirection array ind,, we also maintain two time stamps:

• last_mod(DAD(indJL) is the global time stamp associated with the current data access descriptor of indJL

and

1 Note that a Forall construct or an array construct is an atomic operation from the perspective of language semantics, and

therefore, it is sufficient to consider one write per construct rather than one write per element.

16

• L.last_mod(DAD(ind,))is theglobaltimestampof dataaccessdescriptorDAD(indJL),lastrecordedby
L'sinspector

OnceL'sinspectorhasbeencarriedout,thefollowingchecksareperformedbeforesubsequentexecutionsof
L. If anyof thefollowingconditionsarenotmet,theinspectormustberepeatedfor L.

1. DAD(x_)== L.DAD(z_),1< i < m

2. DAD(indJL) == L.DAD(indJL), 1 _< j < n

3. last-mod(DAD(indJL)) == L-last-mod(L.DAD(indJL)), 1 < j < n, and

4. the loop bounds of L remain unchanged

As the above algorithm tracks possible array modifications at runtime, there is potential for high runtime

overhead in some cases. The overhead is likely to be small in most computationally intensive data parallel

Fortran 90 codes (see Section 6). Calculations in such codes primarily occur in loops or Fortran 90 array

intrinsics, so we need to record modifications to a DAD once per loop or array intrinsic call.

We employ the same method to track possible changes to arrays used in the construction of the data structure

produced at runtime to link partitioners with programs. We call this data structure a GeoCoL graph, and it

will be described in Section 4.1.1. This approach makes it simple for our compiler to avoid generating a new

GeoCoL graph and carrying out a potentially expensive data repartition when no change has occurred.

We could further optimize our inspector reuse mechanism by noting that there is no need to record modi-

fications to all distributed arrays. Instead, we could limit ourselves to recording possible modifications of the

sets of arrays that have the same data access descriptor as an indirection array. Such optimization will require

inter-procedural analysis to identify the sets of arrays that must be tracked at runtime. Future work will include

exploration of this optimization.

4 Coupling Partitioners

In irregular problems, it is often desirable to allocate computational work to processors by assigning all compu-

tations that involve a given loop iteration to a single processor [4]. Consequently, we partition both distributed

arrays and loop iterations using a two-phase approach (Figure 9). In the first phase, termed the "data parti-

tioning" phase, distributed arrays are partitioned. In the second phase, called ."workload partitioning", loop

iterations are partitioned using the information from the first phase. This appears to be a practical approach,

as in many cases the same set of distributed arrays are used by many loops. The following two subsections

describe the two phases.

4.1 Data Partitioning

When we partition distributed arrays, we have not yet assigned loop iterations to processors. We assume that

loop iterations will be partitioned using a user-defined criterion similar to that used for data partitioning. In

the absence of such a criterion, a compiler will choose a loop iteration partitioning scheme; e.g., partitioning

17

Table 2: Common Partitioning Heuristics

Partitioner

Spectral

Bisection

Coordinate
Bisection

FIieraxchical

Subbox

Decomposition

Simulated

Annealing

NeurM

Network

Genetic

Algorithms
Inertial

Bisection

Kernighan

- Lin

Reference

[37]

[3]

[11]

[29]

[29]

[29]

[33]

[24]

Spatial
Information

4

4

Connectivity Vertex Edge

Information Weight Weight

4 ff ff

ff

4 4 4

•,/ 4 _/

4 4 _/

¢

4 4 4

loops so as to minimize non-local distributed array references. Our approach to data partitioning makes an

implicit assumption that most (although not necessarily all) computation will be carried out in the processor

associated with the variable appearing on the left hand side of each statement - we call this the almost owner

computes rule.

There are many partitioning heuristics methods available based on physical phenomena and proximity [37, 3,

41, 20]. Table 2 lists some of the commonly used heuristics and the type of information they use for partitioning.

Most data partitioners make use of undirected connectivity graphs and spatial information. Currently these

partitioners must be coupled to user programs manually. This manual coupling is particularly troublesome and

tedious when we wish to make use of parallelized partitioners. Further, partitioners use different data structures

and are very problem dependent, making it extremely difficult to adapt to different (but similar) problems and

systems.

4.1.1 Interface Data Structures for Partitioners

We link partitioners to programs by using a data structure that stores information on which data partitioning

is to be based. Data partitioners can make use of different kinds of program information. Some partitioners

operate on data structures that represent undirected graphs [37, 24, 29]. Graph vertices represent array indices,

graph edges represent dependencies. Consider the example loop L1 in Figure 11. The graph vertices represent

the N elements of arrays x and y. The graph edges of the loop in Figure 11 are the union of the edges linking

vertices edgel(i) and edge2(i).

In some cases, it is possible to associate geometrical information with a problem. For instance, meshes often

arise from finite element or finite difference discretizations. In such cases, each mesh point is associated with a

location in space. We can assign each graph vertex a set of coordinates that describe its spatial location. These

I8

spatial locations can be used to partition data structures [3, 33].

Vertices may also be assigned weights to represent estimated computational costs. In order to accurately

estimate the computational costs, we need information on how work will be partitioned. One way of deriving

weights is to make the implicit assumption that an owner computes rule will be used to partition work. Under

this assumption, computational cost associated with executing a statement will be attributed to the processor

owning a left hand side array reference. The weight associated with a vertex in the loop L2 of Figure 11 would be

proportionM to the degree of the vertex, assuming functions f and g have identical computationM costs. Vertex

weights can be used as the sole partitioning criterion in problems in which computational costs dominate.

Examples of such code include the flame simulation code described in Section 2.1.2 and "embarrassingly parallel

problems", where computational cost predominates.

A given partitioner can make use of a combination of connectivity, geometrical and weight information.

For instance, we find that it is sometimes important to take estimated computational costs into account when

carrying out coordinate or inertial bisection for problems where computational costs vary greatly from node to

node. Other partitioners make use of both geometrical and connectivity information Ill].

Since the data structure that stores information on which data partitioning is to be based can represent

Geometrical, Connectivity and/or Load information, we call this the GeoCoL data structure.

More formally, a GeoCoL graph G = (V, E, W_, We, C) consists of

I. a set of vertices Y = {vl, v2, ..., v,}, where n = IV I

2. a set of undirected edges E = {el, e2, ..., era} , where m = IEI

3. a set of vertex weights Wv = {WJ, W_, ..., W_}

4. a set of edge weights We = {WJ, W], ..., Win), and

5. a set of coordinate information, for each vertex, of dimension d, C = {< c], ..., c_ >, ..., < c_', ..., c_ >}

4.1.2 Generating the GeoCoL Data Structure via a Compiler

We propose a directive CONSTRUCT that can be employed to direct a compiler to generate a GeoCoL data

structure. A user can specify spatial information using the keyword GEOMETRY.

The following is an example of a GeoCoL declaration that specifies geometrical information:

C$ CONSTRUCT G1 (N, GEOMETRY(3, xcord, ycord, zcord))

This statement defines a GeoCoL data structure called G1 having N vertices with spatiM coordinate in-

formation specified by arrays xcord, ycord, and zcord. The GEOMETRY construct is closely related to the

geometrical partitioning or value based decomposition directives proposed by yon Hanxleden [17].

Similarly, a GeoCoL data structure that specifies only vertex weights can be constructed using the keyword

LOAD as follows.

C$ CONSTRUCT G2 (N, LOAD(weight))

Here, a GeoCoL structure called G2 consists of N vertices with vertex i having LOAD weight(i).

19

Thefollowingexampleillustrateshow connectivity information is specified in a GeoCoL declaration. The

Integer arrays nl and n2 list the vertices associated with each of E graph edges and integer arrays nl and n3

list vertices for another set of E edges.

C$ CONSTRUCT G3 (N, LINK(E, El, n2), LINK(E, El, n3))

The keyword LINK is used to specify the edges associated with the GeoCoL graph. The resultant edges

of the GeoCoL data structure are the union of 1) edges linking El(i) and n2(i) and 2) edges linking El(i) and

n3(i).

Any combination of spatial, load and connectivity information can be used to generate GeoCoL data struc-

ture. For instance, the GeoCoL data structure for a partitioner that uses both geometry and connectivity

information can be specified as follows:

C$ CONSTRUCT G4 (N, GEOMETRY(3, xcord, ycord, zcord), LINK(E, edgel, edge2))

Once the GeoCoL data structure is constructed, data partitioning is carried out. We assume there are P

processors. At compile time dependency coupling code is generated. This code generates calls to the runtime

support that, when the program executes:

I. generates the GeoCoL data structure

2. passes the GeoCoL data structure to a data partitioning procedure; the partitioner partitions the GeoCoL

into P subgraphs, and

3. passes the new distribution information (the assignment of GeoCoL vertices to processors) to a runtime

procedure to redistribute data

The GeoCoL data structure is constructed from the initial default distribution of the distributed arrays.

Once we have the new distribution provided by the partitioner, we redistribute the arrays based on it. A

communication schedule is built and used to redistribute the arrays from the default to the new distribution.

Vienna Fortran [43] provides support for the user to specify a function for distributing data. Within the

function, the user can perform any processing to specify the data distribution.

4.2 Examples of Linking Data Partitioners

In Figure 12 we illustrate a possible set of partitioner coupling directives for the loop L1 in Figure II.

Statements S1 to $4 produce a default initial distribution of data arrays x and y and the indirection arrays

edgel and edge2 in loop L2. The statements $5 and $6 direct the generation of code to construct the GeoCoL

graph and call the partitioner. Statement $5 indicates that the GeoCoL graph edges are to be generated based

on the indirection arrays edgesl and edges2. This information is provided by using the keyword LINK in the

CONSTRUCT directive. The motivation for using the indirection arrays to construct the edges is that they

represent the underlying data access patterns of the arrays x and y in loop L1. When the GeoCoL graph with

edges representing the data access pattern is passed to the partitioner, the partitioner tries to break the graph

into subgraphs such that the number of edges cut between the subgraphs is minimum. Hence, communication

between processors is minimized. The statement $6 in the figure calls the partitioner RSB (recursive spectral

bisection) with GeoCoL as input. The user is provided with a library of commonly available partitioners and

2O

REAL*8 x(nnode),y(nnode)

INTEGER edgel(nedge), edge2(nedge)

S1 DYNAMIC, DECOMPOSITION reg(nnode), reg2(nedge)

$2 DISTRIBUTE reg(BLOCK), reg2(BLOCK)

$3 ALIGN x,y wlth reg

$4 ALIGN edge1, edge2 with reg2

call read_data(edge1, edge2, ...)

$5 CONSTRUCT G (nnode, LINK(nedge,edgel, edge2))

$6 SET distfmt BY PARTITIONING G USING RSB

$7 REDISTRIBUTE reg(distfmt)

C Loop over edges involving x, y

L2 FORALL i : 1, hedge

REDUCE (ADD, y(edgel(i)), f(x(edgel(i)), x(edge2(i))))

REDUCE (ADD, y(edge2(i)), g(x(edgel(i)), x(edge2(i))))

END FORALL

Figure 12: Example of Implicit Mapping in Fortran 90D

$5' CONSTRUCT G (nnode, GEOMETRY(3, xc, yc, zc))

$6' SET distfmt BY PARTITIONING G USING RCB

$7' REDISTRIBUTE reg(distfmt)

Figure 13: Example of Implicit Mapping using Geometry Information in Fortran 90D

21

can choose among them. Also, the user can link a customized partitioner as long as the calling sequence matches

that of the partitioners in the library. Finally, the distributed arrays are remapped in statement $7 using the

new distribution returned by the partitioner.

S1 DYNAMIC, DECOMPOSITION grid(NPOINTS)

S2 DISTRIBUTE grid(BLOCK)

$3 ALIGN x(:), y(:), z(:), wt(:) WITH grid(BLOCK)

K1 wt(hNPOINTS)= 1
K2 do J -- 1, n_timestep

C Phase 1: Navier Stokes Solver - Convection Phase - BLOCK data distribution

K3 FORALLi= 1, NPOINTS

K4 x(i) = x(i) + F(y(i), y(i-1), y(i), y(i+l), z(i))
K5 END FORALL

$4 CONSTRUCT G (NPOINTS, LOAD(wt))

$5 SET mydist BY PARTITIONING G USING BIN_PACKING

$6 REDISTRIBUTE gfid(mydist)

C Phase 2: Adaptive ODE Solver - Reaction Phase - IRREGULAR data distribution

K6 wt(I:NPOINTS) = 1
K7 FORALL i= l,NPOINTS

KS z(i) = Adaptive_Solver(x(i),wt(i))
K9 END FORALL

$7 REDISTRIBUTE grid(BLOCK)
K10 end do

Figure 14: An Example of Adaptive Partitioning Using Fortran 90D

Figure 13 illustrates code similar to that shown in Figure 12 except that the use of geometric information

is shown. Arrays xc, yc, and ze, which carry the spatial coordinates for elements in x and y, are aligned

with the same decomposition to which arrays x and y are aligned. Statement $5' specifies that the GeoCoL

data structure is to be constructed using geometric information. $6' specifies that recursive binary coordinate

bisection (RCB) is used to partition the data.

Recall from Section 2.1.2 that the computation in the combustion code cycles over a convection phase and

a reaction phase. The data access pattern in the convection phase involves accesses to only nearest neighbor

array elements. Hence, during the convection phases it is reasonable to make use of a BLOCK distribution of data

for arrays x, y, and z. Statements SI through $2 in Figure 14 produce BLOCK distribution of data arrays. In the

reaction phase, the amount of work done at each mesh point various as time progresses, and no communication

occurs. The computational cost of the reaction phase at each mesh point in the current time step is stored in

array wt. This cost information is used to distribute data arrays in the reaction phase of the next time step.

A bin-packing heuristic is invoked to obtain the data distribution for the reaction phase. The statements $4

through $6 carry out the data distribution for the reaction phase.

4.3 Loop Iteration Partitioning

Once we have partitioned data, we must partition computational work. One convention is to compute a program

assignment statement S in the processor that owns the distributed array element on S's left hand side. This

22

conventionis normally referred to as the "owner-computes" rule. (If the left hand side of S references a replicated

variable then the work is carried out in all processors). One drawback to the owner-computes rule in sparse codes

is that we may need to generate communication within loops, even in the absence of loop carried dependencies.

For example, consider the following loop:

FORALL i = l,N

SI x(ib(i))=

$2 y(ia(i)) = x(ib(i))

END FORALL

This loop has a loop independent dependence between S1 and $2, but no loop carried dependencies. If we

assign work using the owner-computes rule, for iteration i, statement S1 would be computed on the owner of

ib(i) (OWNER(ib(i))) while statement $2 would be computed on the owner of ia(i) (OWNER(ia(i))). The value

of y(ib(i)) would have to be communicated whenever OWNER(ib(i)) ¢ OWNER(ia(i)).

In Fortran D and Vienna Fortran, a user can specify on which processor to carry out a loop iteration using

the ON clause. For example, in Fortran D, the above loop could be specified as

FORALL i = 1,N ON FIOME(x(i))

S1 x(ib(i))=

$2 y(ia(i)) = x(ib(i))

END FORALL

This means that iteration i must be computed on the processor on which x(i) resides (OWNER(x(i))), where

the size of arrays ia and ib is equal to the number of iterations. Similar capabilities exist in Vienna Fortran.

When an ON clause is not explicitly specified, it is the compiler's responsibility to determine where to

compute each iteration. An alternate policy to the owner computes rule is to assign all work associated with a

loop iteration to a given processor. Our current default is to employ a scheme that executes a loop iteration on

the processor that is the home of the largest number of distributed array references in an iteration, which we

refer to as the "almost owner computes rule".

5 Runtime Support

In this section we briefly discuss the functionality of the runtime primitives that are used to perform the steps

outlined in Figure 9. It should be noted that one of the important features of the approach taken in this work

is the reliance upon an efficient runtime system.

The runtime support for compiler-embedded mapping presented in this paper can be broadly divided into

three categories: 1) general support for communication and distributed data management, 2) data partitioning,

and 3) iteration partitioning (work assignment). The following subsections briefly describe these primitives.

23

5.1 Data Partitioning

The runtime support associated with data partitioning includes procedures for generating distributed the Geo-

CoL data structure for partitioners (that operate on the GeoCoL data structure) to determine a data distribution,

and for procedures to remap data as specified by the partitioner output.

The data structures describing the problem domain are specified by the "CONSTRUCT" directive discussed

earlier. Processing this primitive requires generating a weighted interaction graph representing the computation

load and/or communication dependencies. For example, the connectivity edges of the GeoCoL graph might

reflect the read/write access patterns of the specified computation.

When connectivity information for the GeoCoL data structure is provided in the form of arrays (e.g. indirec-

tion arrays in an irregular loop), pre-processing is required to construct the connectivity graph. The procedures

eliminate_dup_edges and generate-geocol could be used to do the pre-processing. Given the data access pattern

information in the form of integer arrays nl and n2, the GeoCoL graph is constructed by adding an undirected

edge < nl(i), n2(i) > between nodes nl(i) and n2(i) of the graph.

Figure 15 shows the parallel generation of connectivity information in the GeoCoL data structure when

integer indirection arrays are provided. Each processor generates local GeoCoL data structure using the local

set of indirection arrays. The local graph is generated by the procedure eliminate_dup_edges. For clarity, the

local GeoCoL is shown as an adjacency matrix. The local graphs are then merged to form a global distributed

graph using the procedure generate_geocol. During the merge, if we view the local graph as an adjacency matrix

stored in compressed sparse row format, processor P0 collects all entries from the first N/P rows in the matrix

from all other processors, where N is the number of nodes (array size) and P is the number of processors.

Processor P1 collects the next N/P rows of the matrix and so on. Processors remove duplicate entries when

they collect adjacency list entries. The output of procedure generate_geocol is a GeoCoL data structure with

the global connectivity information.

Any appropriate data partitioner may be used to compute the new data distribution using the GeoCoL

graph. Table 2 lists many candidate partitioners for determining the data partitioning. In fact, a user may use

any partitioner as long as the input and output data structures conform to those required by other primitives.

The output of the partitioner describes a mapping of the data satisfying the desired criteria for load balance

and communication minimization.

5.2 Workload Partitioning

Once data is partitioned, computation also must be partitioned. Workload (computation) partitioning refers to

determining which processor will evaluate which expressions. Computation partitioning can be performed at

several levels of granularity. At the finest level, each operation may be individually assigned to a processor. At

the coarsest level, a block of iterations may be a_signed to a processor, without considering the data distribution

and access patterns. Both approaches seem expensive because, in the first case, the amount of preprocessing

overhead can be very high, whereas in the second case communication cost can be very high. We have taken an

approach which represents a compromise. We consider each loop iteration individually before assigning it to a

processor.

For this purpose, we have developed data structures and run procedures to support iteration partitioning.

24

* Generate local graph on each processor representing

Loop's array access pattern

NxN NxN

Local ": "
: •

graph

i ° ° . ,"

* Merge local graphs to produce a distributed graph

Merged

graph

N/P x N ..N./P._.N

Figure 15: Parallel generation of GeoCoL graph

To partition loop iterations, we use a graph called the runtirne iteration graph, or RIG. The RIG associates

with each loop iteration i, all indices of each distributed array accessed during iteration i. A RIG is generated

for every loop that references at least one irregularly distributed array.

Using the RIG, for each iteration we compute a list containing the number of distinct data references on

each processor. Primitive deref_rig uses the RIG and the distributed translation tables to find the processor

assignments associated with each distributed array reference. Subsequently, primitive iteration_partitioner uses

this information to partition iterations. Currently, the heuristic used for iteration partitioning is the "almost

owner computes" rule, in which an iteration is assigned to the processor which owns the majority of the elements

participating in that particular iteration.

Note that just as there are many possible strategies that can be used to partition data, there are also many

strategies that can be used to partition loop iterations. We are currently investigating techniques to specify

"workload partitioners" or "iteration partitioners" in which a user can provide a customized heuristic.

5.3 Data Redistribution

For efficiency reasons, in scientific programs, distribution of distributed data arrays may have to be changed

between computational domains or phases. For instance, as computation progresses in an adaptive problem, the

work load and distributed array access patterns may change based on the nature of problem. This change might

result in a poor load balance among processors. Hence, data must be redistributed periodically to maintain this

balance.

To obtain an irregular data distribution for an irregular concurrent problem, we start with a known initial

distribution /iA of data arrays. Then, we apply a heuristic method to obtain an irregular distribution 8B. Once

we have the new data distribution, all data arrays associated with distribution 6A must he transformed to

distribution _B. For example, in solving the Euler equations of an unstructured grid, the flow variables are

distributed in this method. Similarly, the loop iterations and the indirection arrays associated with the loop

25

Tabl(

(Timein
Sees)

No Schedule

Reuse

Schedule

Reuse

3: Performance of Schedule Reuse

10K Mesh 53k Mesh 648 Atoms
Processors

8 16

161 94

10.1 8.4

Processors

32 64

301 189

19.8 17.0

Processors

4 8 16

707 384 227

15.2 9.7 8.0

must also be remapped.

To redistribute data and loop iteration space, we have developed a runtime procedure called remap. This

procedure takes as input the original and the new distribution in the form of translation tables and returns a

communication schedule. This schedule can be used to move data between initial and new distributions.

6 Experimental Results

This section presents the experimental results for the various techniques presented in this paper for compiler and

runtime support for irregular problems. All measurements are performed on the Intel iPSC/860. In particular,

we present the performance improvements obtained by employing communication schedule reuse, comparing

the performance of compiler generated code with that of hand coded versions, and also present data on the

performance of compiler-embedded mapping using various partitioners.

6.1 Communication Schedule Reuse

In this section, we present performance data for the schedule saving technique proposed in Section 3 for the

Fortran 90D/HPF compiler implementation.

These performance measurements are for a loop over edges from 3-D unstructured Euler solver [31] for both

10K and 53K mesh points, and for an electrostatic force calculation loop in a molecular dynamics code for a

648 atom water simulation [6]. The functionality of these loops is equivalent to the loop L1 in Figure 11.

Table 3 presents the performance results of the compiler generated code with and without the schedule reuse

technique. The table presents the execution time of the loops for 100 iterations with distributed arrays decom-

posed irregularly using a recursive coordinate bisection partitioner. Clearly, being able to reuse communication

schedules improves performance tremendously. This is because without reuse, schedules must be regenerated at

each time step , and therefore, the cost is proportional to the number of iterations.

6.2 Performance of the Mapper Coupler

In this section, we present performance results that compare the the costs incurred by the compiler generated

mapper coupler procedures with the cost of a hand embedded partitioner.

To map arrays we employed two different kinds of parallel partitioners: (1) geometry based partitioners

(coordinate bisection [3] and inertial bisection [33]), and (2) a connectivity based partitioner (recursive spectral

26

Table 4: Unstructured Mesh Template- 53K Mesh - 32 Processors

Recursive Coordinate Bisection Block Partition

(Time Hand

in Secs) Coded

Partitioner 1.3

Inspector, remap 3.3
Executor 13.9

Total 18.5

Compiler:
No Schedule

Reuse

1.3

286

13.9

Compiler
Schedule

Reuse

1.3

3.4

15.1

301 19.8

Hand

Coded

0.0

3.2

36.6

39.8

Compiler
Schedule

Reuse

0.0

3.4

38.2

41.6

Table 5: Unstructured Mesh Template- 53K Mesh - 32 Processors

Inertial Bisection Spectral Bisection

(Time Hand Compiler Hand Compiler:

in Secs) Coded Schedule Coded Schedule
Reuse Reuse

Graph Generation 1.8 2. l
Partitioner 1.4 1.4 226 227

Inspector, remap 3.1 3.3 3.1 3.2
Executor 14.7 16.1 12.5 13.4

Total 19.2 20.8 243 246

bisection [37]). The performance of the compiler embedded mapper and a hand parallelized version are shown

in Tables 4 and 5.

In Tables 4 and 5, Partitioner represents the time needed to partition the arrays using the partitioners,

Executor depicts the time needed to carry out the actual computation and communication for 100 iterations

(time steps), and inspector and remap show the time taken to build the communication schedule and redistribute

data to the new distribution.

The Table 4 presents the performance of results of the Euler loop with the compiler-linked recursive coordi-

nate bisection partitioner and the HPF BLOCK distribution for a 53K mesh template on 32 processors. Two

important observations can be made from Table 4. First, the compiler generated code performs almost as well

Table 6: Performance of Compiler-linked Coordinate Bisection Partitioner with Schedule Reuse

Tasks 10K Mesh 53k Mesh 648 Atoms

(Time in Processors Processors Processors

Sees)

Partitioner

Inspector

Remap
Executor

Total

8

0.4

0.4

1.4

7.9

10.1

16 32

0.4 1.3

0.3 0.9

0.9 2.5

6.9 15.1

8.5 19.8

64

3.1

0.5

1.7

ll.7

17.0

4 8 16

0.1 0.t 0.1

2.2 1.2 0.7

4.8 2.6 1.5

8.1 5.8 5.7

15.2 9.7 8.0

27

Table7: CompilerPerformanceforBlockDistributionwithScheduleReuse
Tasks

(Timein
Sees)

Inspector

Remap
Executor

Total

10K Mesh 53k Mesh
Processors

8 16

0.5 0.3

1.2 0.8

17.6 12.6

19.3 13.7

Processors

32 64

1.2 0.7

2.2 1.0

38.2 28.6

41.6 30.3

648 Atoms

Processors

4 8 16

2.7 1.5 0.8

4.5 2.6 1.5

10.3 7.6 7.3

17.5 11.7 9.6

as the hand written code. In fact, the compiler generated code is within 15% of the hand coded version. The

overhead is partly due to book-keeping done to reuse schedules and partly due to runtime calculation of loop

bounds. Second, the performance of the code using the partitioner is much better than the performance of the

block partitioned code even when the cost of executing the partitioner is included.

Table 5 shows the performance of compiler generated code when two additional partitioners are used; namely,

recursive spectral bisection (RSB) and inertial bisection. In Table 5, Partitioner for Spectral Bisection depicts

the time needed to partition the GeoCoL graph data structure using a parallelized version of Simon's single level

spectral partitioner [37]. Only a modest effort was made to produce an efficient parallel implementation of the

partitioner and we believe that the performance and the execution time of the partitioner can be tremendously

improved by using a multilevel version of the partitioner [2, 21]. We partitioned the GeoCoL graph into a

number of subgraphs equal to the number of processors employed. It should be noted that any parallelized

partitioner could be used. The graph generation time depicts the time required to generate GeoCoL graph.

Clearly, different partitioners perform differently in terms of execution time and the quality of load balancing.

We observe that the best load balancing is obtained by using RSB because the time for the executor phase is

minimized. However, the cost of partitioning using RSB is quite high. Thus, the choice of a partitioner should

depend on how long the solution of a problem is likely to take (the number of time steps).

Table 6 shows the performance of the compiler generated code for the Euler and the molecular dynamics

loops on various number of processors. To compare the partitioner's performance for different programs, we

have also included timings for a hand coded block partitioned version in Table 7. In the blocked version, we

assigned each contiguous blocks of array elements to processors using the HPF BLOCK distribution. The use

of either a coordinate bisection partitioner or a spectral bisection partitioner led to a reduction factor of two to

three improvement in the executor time compared to the use of block partitioning. This example also points out

the importance of the number of executor iterations and choice of partitioner. When compared to the recursive

coordinate bisection partitioner, the recursive spectral bisection partitioner is associated with faster time per

executor iteration but also a significantly higher 15artitioning overhead. Irregular distribution of arrays performs

significantly better than the existing BLOCK distribution supported by HPF.

6.3 Performance of Adaptive Problems

We now present experimental results for an application of the type described in Section 2.1.2. Recall that

28

Table8: PerformanceofCombustionCodeWith Compiler-LinkedLoadbasedPartitioner

GridSize
(Timein

See.)
1024x32

1024x128

Load
Balance

Processors

16 4.1
32 2.8
32 8.5

5.264

HandCoded
Comp

19.4

12.4

34.1

26.4

Compiler Generated No Load Balance

Total Load Comp Total Total

Balance

23.5 4.3 19.4 23.7 117

15.2 2.9 12.8 15.8 61

42.9 8.5 34.6 43.4 397

31.6 5.2 26.9 32.1 342

this type of application alternates between two distinct computational phases. The first phase (convection)

consists of structured calculations on a Cartesian mesh. The second phase (reaction) involves a set of local

computations at each mesh point. The computational cost associated with the reaction phase varies between

mesh points. Figure 6 in Section 2.1.2 depicts the computational structure of this type of application.

The results we present are for a simplified version of the Reactive Euler solver developed by James Weber at

the University of Maryland. This algorithm computes the reaction rates of various gases, integrates the governing

rate equations, and determines the new number densilies in an hypersonic medium. The thermodynamic

quantities, such as temperature, pressure, and specific heat ratio are evaluated as the reaction mechanism

proceeds. The first phase of the Reactive Euler solver is an explicit Navier Stokes solver, while the second phase

is an adaptive ordinary differential equation solver.

Figure 14 depicts our load balancing strategy. In this simplified example, we represent the mesh as a one

dimensional array. The array is partitioned into equal-size blocks (i.e. a BLOCK mapping). In order to ensure

a good load balance during the reaction phase, we redistribute only expensive reaction calculations. Reaction

calculations are redistributed based on the costs incurred in the previous time step. After the reaction phase,

the remapped data are returned to their original positions.

Table 8 presents the performance of the second reaction phase for 100 cycles, and a comparison between

hand coded and compiler generated code. The Load Balance columns give the time taken to carry out the

partitioner and remap the data. We used a bin-packing heuristic to balance the load in the combustion phase.

We observe that the performance of the compiler generated code is almost as good as that of the hand coded

version. Also note the performance improvements obtained when using a load based partitioner and adaptivity

compared to performing no load balancing.

Finally, Table 9 summarizes the compiler performance for all the codes and presents a comparison with the

hand coded version. For all problems, the performance of the compiler generated code is within 15% of that of

the hand coded version.

7 Related Work

Research has been carried out by von Hanxleden [17] on compiler-linked partitioners that decompose arrays based

on distributed array element values; these are called value based decompositions. Our GEOMETRY construct

can be viewed as a particular type of value based decomposition. Several researchers have developed program-

ming environments that are targeted toward particular classes of irregular or adaptive problems. Williams [41]

29

Table 9: Performance of Com filer-linked Partitioners

Total

Time (in

Secs)
Hand coded

Compiler

10K Mesh 53k Mesh 648 Atoms 1024x32 Grid
Processors

8 16

8.8 7.0

10.1 8.5

Processors

32 64

18.5 14.9

19.8 17.0

Processors

4 8 16

14.3 8.5 7.0

15.2 9.7 8.0

Processors

16 32

23.5 15.2

23.7 15.8

describes a programming environment (DIME) for calculations with unstructured triangular meshes using dis-

tributed memory machines. Baden [1] has developed a programming environment targeted towards particle

computations. This programming environment provides facilities that support dynamic load balancing.

There are a variety of compiler projects targeted at distributed memory multiprocessors: the Fortran D

compiler projects at Rice and Syracuse [15, 5] and the Vienna Fortran compiler project [43] at the University

of Vienna are two examples. The Jade project at Stanford [26], the DINO project at Colorado [35], Kathy

Yelick's work [7] at Berkeley, and the CODE project at UT, Austin provide parallel programming environments.

Runtime compilation methods have been employed in four compiler projects: the Fortran D project [22], the

Kali project [25], Marina Chen's work at Yale [28] and the PARTI project [32, 42, 36]. The Kali compiler was

the first compiler to implement inspector/executor type runtime preprocessing [25] and the ARF compiler was

the first compiler to support irregularly distributed arrays [42].

In earlier work, we have outlined a strategy (but did not attempt a compiler implementation) that would

make it possible for compilers to generate compiler embedded connectivity based partitioners directly from

marked loops [12]. The approach described here requires more input from the user and less compiler support.

8 Conclusions

We have described work that demonstrates two new mechanisms for dealing effectively with irregular computa-

tions. The first mechanism invokes a user specified mapping procedure using a set of compiler directives. The

second mechanism is a simple conservative method that in many cases makes it possible for a compiler to recog-

nize the potential for reusing previously computed results from inspectors (e.g. communication schedules, loop

iteration partitions, information that associates off-processor data copies with on-processor buffer locations).

We view the CHAOS procedures described here as forming a portion of a portable, compiler independent,

runtime support library. The CHAOS runtime support library contains procedures that

1. support static and dynamic distributed array partitioning

2. partitions loop iterations and indirection arrays

3. remap arrays from one distribution to another and

4. carry out index translation, buffer allocation and communication schedule generation

We tested our prototype compiler on computational templates extracted from an unstructured mesh compu-

tational fluid dynamics code, a molecular dynamics code and an hypersonic combustion code. We embedded our

3O

runtimesupportbyhand and compared its performance against the compiler generated code. The compiler's

performance on these templates was within 15% of the hand compiled code.

In our current implementation, we have performed iteration partitioning of a Forall loop using the almost

owner computes rule. In general, for data partitioning, a user or compiler should be able to specify a partitioner

to perform iteration partitioning. We are currently developing primitives to couple iteration partitioners with

Fortran 90 Forall loops.

The CHAOS procedures described in this paper are available for public distribution and can be obtained

from netlib or from the anonymous ftp site hyena.cs.umd.edu.

Acknowledgments

The authors would like to thank Alan Sussman and Raja Das for many fruitful discussions; Shamik Sharma

and Mustafa Uysal for their part in constructing the CHAOS runtime support; Donna Meisel for careful proof

reading of this manuscript.

The authors would like to thank Chuck Koelbel and Sanjay Ranka for many enlightening discussions about

universally applicable partitioners and how to embed such partitioners in compilers; we would also like to thank

Chuck Koelbel, Ken Kennedy and Seema tliranandani for many useful discussions about integrating Fortran-D

runtime support for irregular problems. Special thanks go to Reinhard yon Hanxleden for his helpful suggestions.

The authors would Mso like to gratefully acknowledge Zeki Bozkus and Tom ttaupt for the time they spent

explaining the internals of the Fortran 90D compiler. We would also like to thank Horst Simon for the use of

his unstructured mesh partitioning software.

References

[1] S. Baden. Programming abstractions for dynamically partitioning and coordinating localized scientific calculations

running on multiprocessors. SIAM J. Sci. and Stat. Computation., 12(1), January 1991.

[2] S.T. Barnard and H. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning unstruc-
tured problems. Technical Report RNR-92-033, NAS Systems Division, NASA Ames Research Center, November

1992.

[3] M.J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors. IEEE Trans.

on Computers, C-36(5):570-580, May 1987.

[4] Harry Berryman, Joel Saltz, and Jeffrey Scroggs. Execution time support for adaptive scientific algorithms on

distributed memory machines. Concurrency: Practice and Experience, 3(3):159-178, June 1991.

[5] Zeki Bozkus, Alok Choudhary, Geoffrey Fox, Tomasz Haupt, Sanjay Ranka, and Min-You Wu. Compiling For-

tran 90D/IiPF for distributed memory MIMD computers. To appear in the Journal of Parallel and Distributed

Computing, March 1993.

[6] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. Charmm: A program

for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4:187,

1983.

[7] Soumen Chakrabarti and Katherine Yelick. Implementing an irregular application on a distributed memory multipro-

cessor. In Proceedings o] the Fourth ACM SIGPLAN Symposium on Principles _ Practice of Parallel Programming

(PPOPP), May 1993. ACM SIGPLAN Notices, Vol. 28, No. 7.

[8] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Programming, 1(1):31-50, Fall

1992.

31

[9] Barbara Chapman, Piyush Mehrotra, and Hans Zima. Programming in Vienna Fortran. Technical Report 92-9,

ICASE, NASA Langley Research Center, March 1992.

[10] A. Choudhary, G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, and J. Saltz. Software support for irregular

and loosely synchronous problems. Computing Systems in Engineering, 3(1-4):43-52, 1992. Papers presented at the

Symposium on High-Performance Computing for Flight Vehicles, December 1992.

[11] T. W. Clark, R. v. Hanxleden, J. A. McCammon, and L. R. Scott. Parallelization strategies for a molecular dynamics

program. In Intel Supercomputer University Partners Conference, Timberline Lodge, Mt. Hood, OR, April 1992.

[12] R. Das, R. Ponnusamy, J. SaJtz, and D. Mavriplis. Distributed memory compiler methods for irregular problems -

data copy reuse and runtime partitioning. In Compilers and Runtime Software for Scalable Multiprocessors, J. Saltz

and P. Mehrotra Editors, Amsterdam, The Netherlands, I992. Elsevier.

[13] R. Das and J. H. Saltz. Program slicing techniques for compiling irregular problems. In Proceedings of the Sixth

Workshop on Languages and Compilers for Parallel Computing, Portland , OR, August 1993.

[14] D. Loveman (Ed.). Draft High Performance Fortran language specification, version 1.0. Technical Report CRPC-

TR92225, Center for Research on Parallel Computation, Rice University, January 1993.

[15] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran D language specification.

Department of Computer Science Rice COMP TR90-141, Rice University, December 1990.

[16] S. Hammond and T. Barth. An optimal massively parallel Euler solver for unstructured grids. AIAA Journal, AIAA

Paper 91-04_1, January 1991.

[17] R. v. Hanxleden. Compiler support for machine independent parallelization of irregular problems. Technical Report

CRPC-TR92301-S, Center for Research on Parallel Computation, Rice University, November 1992. Available via

anonymous ftp from softlib.rice, edu as pub/CRPC-TRs/reports/CRPC-TR92301-S.

[18] R. v. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler analysis for irregular problems in Fortran D.

In Proceedings of the 5th Workshop on Languages and Compilers for Parallel Computing, New Haven, CT, August
1992.

[19] R. v. Hanxleden, K. Kennedy, and J. Saltz. Value-based distributions in Fortran D -- a preliminary report. Technical

Report CRPC-TR93365-S, Center for Research on Parallel Computation, December 1993.

[20] R. v. Hanxleden and L. R. Scott. Load balancing on message passing architectures. Journal of Parallel and

Distributed Computing, 13:312-324, 1991.

[21] B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping parallel computa-

tions. Technical Report SAND 92-1460, Sandia National Laboratory, Albuquerque, September 1992.

[22] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-independent parallel programming in

Fortran D. In Compilers and Runtime Software for Scalable Multiprocessors, J. Saltz and P. Mehrotra Editors,

Amsterdam, The Netherlands, To appear I991. Elsevier.

[23] A. Jameson, T. J. Baker, and N. P. Weatherhill. Calculation of inviscid transonic flow over a complete aircraft.

AIAA paper 86-0103, January 1986.

[24] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal,

49(2):291-307, February 1970.

[25] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on distributed memory archi-

tectures. In _nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 177-186.

ACM, March 1990.

[26] Monica Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and optimizations of block algo-

rithms. In Proceedings of the Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS IV), pages 63-74. ACM Press, April 1991.

[27] W. E. Leland. Load-balancing heuristics and process behavior. In Proceedings of Performance 86 and ACM SIC-

METRICS 86, pages 54-69, 1986.

32

[28]L.C.Luand M.C. Chen. Parallelizing loops with indirect array references or pointers. In Proceedings of the Fourth

Workshop on Languages and Compilers for Parallel Computing, Santa Clara, CA, August 1991.

[29] N. Mansour. Physical optimization algorithms for mapping data to distributed-memory multiprocessors. Technical

report, Ph.D. Dissertation, School of Computer Science,Syracuse University, 1992.

[30] D. J. Mavriplis. Adaptive mesh generation for viscous flows using delannay triangulation. Journal of Computational

Physics, 90(2):271-291, 1990.

[31] D. J. Mavriplis. Three dimensional unstructured multigrid for the Euler equations, paper 91-1549cp. In AIAA lOth

Computational Fluid Dynamics Conference, June 1991.

[32] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Principles of runtime support for parallel

processors. In Proceedings of the 1988 A C M International Conference on Supercomputing, pages 140-152, July 1988.

[33] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element equations on concurrent computers. In Prac. of

Symposium on Parallel Computations and theis Impact on Mechanics, Boston, December 1987.

[34] G. Patnaik, K.J. Laskey, K. Kailasanath, E.S. Oran, and T. V. Brun. FLIC - A detailed, two-dimensional flame

model. NRL Report 6555, Naval Research Laboratory, Washington, DC, September 1989.

[35] Matthew Rosing, Robert B. Schnabel, and Robert P. Weaver. The DINO parallel programming language. Journal

of Parallel and Distributed Computing, 13(1):30-42, September 1991.

[36] J. Saltz, H. Berryman, and J. Wu. Runtime compilation for multiprocessors. Concurrency: Practice and Experience,

3(6):573-592, 1991.

[37] H. Simon. Partitioning of unstructured mesh problems for parallel processing. In Proceedings of the Conference on

Parallel Methods on Large Scale Structural Analysis and Physics Applications. Pergamon Press, 1991.

[38] V. Venkatakrishnan, H. D. Simon, and T. J. Barth. A MIMD implementation of a parallel Euler solver for unstruc-

tured grids, submitted to Journal of Supercomputing. Report RNR-91-024, NAS Systems Division, NASA Ames

Research Center, Sept 1991.

[39] P. Venkatkrishnan, J. Saltz, and D. Mavriplis. Parallel preconditioned iterative methods for the compressible navier

stokes equations. In 12th International Conference on Numerical Methods in Fluid Dynamics, Oxford, England,

July 1990.

[40] N. P. WeatherUl. The generation of unstructured grids using dirichlet tessalations. Report MAE 1715, Princeton,

July 1985.

[41] R. Williams. Performance of dynamic load balancing algorithms for unstructured mesh calculations. Concurrency,

Practice and Experience, 3(5):457-482, February 1991.

[42] J. Wu, J. Saltz, S. ttiranandani, and H. Berryman. Runtime compilation methods for multicomputers. In Proceedings

of the 199I International Conference on Parallel Processing, volume 2, pages 26-30, 1991.

[43] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a language specification. Report

ACPC-TR92-4, Austrian Center for Parallel Computation, University of Vienna, Vienna, Austria, 1992.

33

REPORT DOCUMENTATION PAGE Form Approved
OMB No 0704-0188

Public report;hE burden for th s co ect on of nformat on s est mated to averaffe I hour per response includinf the time for reviewin instructions searchin exist n data sources
h ri "' " . K : [g ,gut e ng and malntamm I the data needed, and completing and rewewmg the collection of information Send comments regarding this burden estimate or any other aspect of th s

collection of information, mcludinK suggestions for reducingthis burden to Washinglon Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson

Day $ H ghway, Suite 1204. Arlin_on, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washincton. DC 20503

1. AGENCY USE ONLY_Leave blank) 2, REPORT DATE

December 1993

4, TITLE AND SUBTITLE

RUNTIME SUPPORT AND COMPILATION

USER-SPECIFIED DATE DISTRIBUTIONS

6. AUTHOR(S)

Ravi Ponnusamy, Joel Saltz, Alok Choudhury, Yuan-Shin Hwang, and Geoffre)

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

METHODS FOR

C NASI-19480

WU 505-90-52-01

Fox

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 93-99

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-191587

ICASE Report No, 93-99

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card

Final Report

To be submitted to IEEE Transactions on Parallel and Distributed Computing

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

This paper describes two new ideas by which an HPF compiler can deal with irregular computations effectively.

The first mechanism invokes a user specified mapping procedure via a set of compiler directives. The directives

allow use of program arrays to describe graph connectivity, spatial location of array elements and computational

load. The second mechanism is a simple conservative method that in many cases enables a compiler to recognize

that it is possible to reuse previously computed information from inspectors (e.g. communication schedules, loop

iteration partitions, information that associates off-processor data copies with on-processor buffer locations). We

present performance results for these mechanisms from a Fortran 90D compiler implementation.

14. SUBJECT TERMS

runtime optimizations; HPF compilers; data distributions; unstructured applications

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified
ii ii

_I'SN 7540-01-280-5500

U.S. GOVERNMENT PRINTING OFFICE: 1994 - 528-0(_I/86109

15. NUMBER OF PAGES

35

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

'Standard Form 298(Rev. 2-89)
Prescrlbed by ANSI Std, Z39-18
298-102

